翻訳と辞書
Words near each other
・ Non ultra petita
・ Non Valley
・ Non Violent Resistance (psychological intervention)
・ Non zero one
・ Non Zero Sumness
・ Non è gratis
・ Non è l'inferno
・ Non è la RAI
・ Non è vero... ma ci credo
・ Non, je ne regrette rien
・ Non, à jamais sans toi
・ Non-24-hour sleep–wake disorder
・ Non-abelian
・ Non-abelian class field theory
・ Non-abelian gauge transformation
Non-abelian group
・ Non-abidance
・ Non-access stratum
・ Non-achromatic objective
・ Non-adjacent form
・ Non-affiliated members of the House of Lords
・ Non-aggression pact
・ Non-aggression Pact (band)
・ Non-aggression pact of 1979
・ Non-aggression principle
・ Non-Agricultural Market Access
・ Non-alcoholic beverage
・ Non-alcoholic fatty liver disease
・ Non-alcoholic mixed drink
・ Non-aligned Coalition


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Non-abelian group : ウィキペディア英語版
Non-abelian group

In mathematics, a nonabelian group, sometimes called a noncommutative group, is a group ( ''G'', ∗ ) in which there exists at least one pair of elements ''a'' and ''b'' of ''G'', such that ''a'' ∗ ''b'' ≠ ''b'' ∗ ''a''. This class of groups contrasts with the abelian groups. (In an abelian group, all pairs of group elements commute).
Nonabelian groups are pervasive in mathematics and physics. One of the simplest examples of a nonabelian group is the dihedral group of order 6. It is the smallest finite nonabelian group. A common example from physics is the rotation group SO(3) in three dimensions (rotating something 90 degrees away from you and then 90 degrees to the left is not the same as doing them the other way round).
Both discrete groups and continuous groups may be nonabelian. Most of the interesting Lie groups are nonabelian, and these play an important role in gauge theory.
==See also==

* Group theory
* Abelian group
* Associative algebra
* Noncommutative geometry
* Niels Henrik Abel

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Non-abelian group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.